organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Acetamidobenzenesulfonamido)benzoic acid

Shahzad Sharif,^a Islam Ullah Khan,^a Tariq Mahmood^b and Sung Kwon Kang^c*

^aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, ^bGlaxo Smith Kline, 18 KM Feroze Pur Road, Lahore 54000, Pakistan, and ^cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea Correspondence e-mail: skkang@cnu.ac.kr

Received 19 May 2011; accepted 27 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.045; wR factor = 0.092; data-to-parameter ratio = 7.1.

In the title compound, C₁₅H₁₄N₂O₅S, two similar molecules comprise the asymmetric unit, which are linked by strong intermolecular $C-H\cdots\pi$ interactions. Both molecules are bent, with dihedral angles of 71.94(16) and $74.62(15)^{\circ}$ between the benzene rings. An intramolecular N-H···O hydrogen bond occurs in each molecule. In the crystal, intermolecular N-H···O and O-H···O hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For our previous studies on sulfonamide derivatives, see: Khan et al. (2011); Sharif et al. (2010). For background to the pharmacological use of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992).

b = 13.036 (3) Å

Experimental

Crystal data $C_{15}H_{14}N_2O_5S$ М,

$M_r = 334.34$	c = 13.132 (3) Å
Monoclinic, P2 ₁	$\beta = 109.47 \ (3)^{\circ}$
a = 9.3721 (19) Å	V = 1512.7 (5) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2007)
  T_{\min} = 0.92, \ T_{\max} = 0.931
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 1 restraint $wR(F^2) = 0.092$ H-atom parameters constrained S = 0.82 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 2926 reflections 415 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C37-C42 and C14-C19 rings, respectively.

T = 296 K

 $0.25 \times 0.12 \times 0.09 \text{ mm}$

2926 measured reflections

2926 independent reflections

1470 reflections with $I > 2\sigma(I)$

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$09-H9\cdots O22^{i}$ $N10-H10\cdots O8$ $N20-H20\cdots O13^{ii}$ $O31-H31\cdots O45^{iii}$ $N33-H33\cdots O32$ $N43-H43\cdots O36^{i}$ $C23-H238\cdots Cg1$	0.82 0.86 0.86 0.82 0.86 0.86 0.96	1.84 2.13 2.24 1.81 2.17 2.11 2.74	2.649 (6) 2.624 (7) 3.073 (6) 2.623 (6) 2.641 (7) 2.958 (7) 3.6110 (15)	168 116 164 174 114 168 151
$C46 - H46C \cdots Cg2$	0.96	2.71	3.5821 (13)	151

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) -x + 1, $y + \frac{1}{2}$, -z; (iii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2747).

References

- Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, I. U., Bibi, S., Mariam, I., Sharif, S. & Kang, S. K. (2011). Acta Cryst. E67. 0369.
- Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699-716. New York: Wiley.
- Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.
- Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66. 01288
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o1570 [doi:10.1107/S1600536811020307]

2-(4-Acetamidobenzenesulfonamido)benzoic acid

S. Sharif, I. U. Khan, T. Mahmood and S. K. Kang

Comment

In continuation of our structural studies of sulfonamides (Khan *et al.*, 2011; Sharif *et al.*, 2010) of the interest owing to their potential as biologically active molecules (Korolkovas, 1988; Mandell & Sande, 1992), herein, we report the crystal structure of the title compound, (I).

Two independent but similar molecules comprise the asymmetric unit, Fig. 1. The phenyl carboxyl moieties are almost planar with r.m.s. deviations of 0.012 and 0.023 Å from the corresponding least-squares plane defined by the eight constituent atoms. The dihedral angles between the benzene rings are 71.94 (16) and 74.62 (15) °. The two independent molecules are linked by intermolecular C—H··· π interactions (centroid—H distance = 2.711 (3) and 2.740 (3) Å) (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Table 1, Fig. 2).

Experimental

To anthranilic acid (137 mg, 1 mmol) in distilled water (10 ml) was added 4-acetamidobenzenesulfonyl chloride (234 mg, 1 mmol). The pH = 8 was maintained by 3% Na₂CO₃ with stirring at room temperature. The reaction was monitored by TLC. After completion of reaction, the solution was adjusted to pH = 3 with 3 N HCl solution. The white precipitate that formed was filtered and washed with water. Crystallization was from methanol.

Refinement

All the H atoms were positioned in their idealized geometries with C—H = 0.93–0.96 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}$ for aromatic C and N atoms and with $U_{iso}(H) = 1.5U_{eq}$ for methyl C and O atoms. In the absence of significant anomalous scattering effects, 2267 Friedel pairs have been merged.

Figures

Fig. 1. The molecular structures of the two independent molecules of (I) showing the atomnumbering scheme and 30% probability ellipsoids. The C—H $\cdots\pi$ interactions are shown as dashed lines.

Fig. 2. Part of the crystal structure of (I), viewed normal to (0 0 1), illustrating the 3-D network of molecules linked by intermolecular N—H…O and O—H…O hydrogen bonds (dashed lines).

2-(4-Acetamidobenzenesulfonamido)benzoic acid

Crystal data	
$C_{15}H_{14}N_2O_5S$	F(000) = 696
$M_r = 334.34$	$D_{\rm x} = 1.468 \ {\rm Mg \ m}^{-3}$
Monoclinic, P2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1295 reflections
<i>a</i> = 9.3721 (19) Å	$\theta = 2.8 - 18.7^{\circ}$
b = 13.036 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 13.132 (3) Å	T = 296 K
$\beta = 109.47 \ (3)^{\circ}$	Block, violet
$V = 1512.7 (5) \text{ Å}^3$	$0.25\times0.12\times0.09~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2926 independent reflections
graphite	1470 reflections with $I > 2\sigma(I)$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -11 \rightarrow 10$
$T_{\min} = 0.92, \ T_{\max} = 0.931$	$k = 0 \rightarrow 15$
2926 measured reflections	$l = 0 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H-atom parameters constrained
<i>S</i> = 0.82	$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2926 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

415 parameters	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9116 (7)	0.1951 (5)	0.4462 (5)	0.0489 (17)
C2	0.8856 (6)	0.1876 (4)	0.3361 (5)	0.0378 (15)
C3	0.9664 (8)	0.2491 (5)	0.2895 (6)	0.069 (2)
H3	0.9489	0.2433	0.2157	0.082*
C4	1.0705 (8)	0.3179 (6)	0.3474 (7)	0.068 (2)
H4	1.124	0.3585	0.3143	0.081*
C5	1.0948 (8)	0.3260 (6)	0.4565 (7)	0.078 (2)
Н5	1.1645	0.3736	0.4972	0.094*
C6	1.0181 (8)	0.2652 (6)	0.5064 (6)	0.0547 (18)
Н6	1.0374	0.271	0.5804	0.066*
C7	0.8274 (7)	0.1297 (5)	0.4990 (5)	0.0444 (16)
08	0.7297 (6)	0.0692 (4)	0.4533 (4)	0.0761 (16)
09	0.8716 (5)	0.1415 (4)	0.6050 (4)	0.0753 (14)
Н9	0.8211	0.1043	0.63	0.113*
N10	0.7746 (6)	0.1191 (4)	0.2728 (4)	0.0556 (15)
H10	0.7657	0.0613	0.3017	0.067*
S11	0.6629 (2)	0.13965 (13)	0.15141 (13)	0.0496 (5)
012	0.5537 (5)	0.0600 (3)	0.1345 (3)	0.0650 (13)
013	0.7415 (4)	0.1479 (3)	0.0766 (3)	0.0601 (12)
C14	0.5771 (6)	0.2586 (5)	0.1545 (5)	0.0409 (16)
C15	0.5660 (7)	0.3302 (5)	0.0747 (5)	0.0505 (18)
H15	0.6111	0.3183	0.0225	0.061*
C16	0.4882 (7)	0.4181 (5)	0.0734 (5)	0.0523 (19)
H16	0.48	0.4663	0.0196	0.063*
C17	0.4204 (6)	0.4379 (5)	0.1504 (5)	0.0374 (15)
C18	0.4315 (7)	0.3678 (5)	0.2282 (5)	0.0485 (18)
H18	0.3873	0.3809	0.2806	0.058*
C19	0.5082 (7)	0.2768 (5)	0.2307 (5)	0.0479 (17)
H19	0.5134	0.228	0.2834	0.057*
N20	0.3395 (5)	0.5312 (4)	0.1386 (4)	0.0434 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H20	0.3362	0.5668	0.0827	0.052*
C21	0.2673 (6)	0.5729 (5)	0.2010 (5)	0.0411 (16)
O22	0.2672 (5)	0.5316 (3)	0.2864 (3)	0.0580 (13)
C23	0.1884 (7)	0.6728 (4)	0.1635 (5)	0.059 (2)
H23A	0.2015	0.6925	0.0967	0.088*
H23B	0.2307	0.7246	0.217	0.088*
H23C	0.0825	0.6653	0.1527	0.088*
C24	-0.0124(7)	0.9059 (5)	0.1004 (5)	0.0449 (16)
C25	0.0910 (7)	0.9800 (5)	0.1592 (5)	0.0437 (17)
C26	0.1722 (7)	1.0380 (5)	0.1075 (6)	0.061 (2)
H26	0.2361	1.09	0.1449	0.074*
C27	0.1581 (7)	1.0185 (6)	0.0021 (6)	0.064(2)
H27	0.2137	1.0569	-0.0312	0.077*
C28	0.0617 (8)	0.9422 (6)	-0.0555(6)	0.071 (2)
H28	0.0553	0.9272	-0.1261	0.085*
C29	-0.0240(7)	0.8892(5)	-0.0065(6)	0.0510(18)
H29	-0.0924	0.8405	-0.0463	0.061*
C30	-0.1013(7)	0.8458 (5)	0.1504 (6)	0.001 0.0479 (17)
031	-0.1843(5)	0.0438(5) 0.7725(4)	0.1304(0) 0.0872(4)	0.0477(14)
H31	-0.2313	0.7723 (4)	0.12	0.0077(1+) 0.101*
032	-0.1066(5)	0.8583 (4)	0.12 0.2407 (4)	0.0691 (15)
N33	0.1000(3)	0.0063(4)	0.2407(4)	0.0001(10)
IN33 L122	0.1094 (3)	0.9903 (4)	0.2063 (4)	0.0555 (15)
S24	0.0293	1.01400(12)	0.2609	0.007^{+}
025	0.2731(2) 0.2430(5)	1.01499 (13)	0.30347(14)	0.0374(3)
033	0.3439(3)	1.1030(3)	0.3377(4)	0.0090(14)
030	0.2303(3)	1.0137(4)	0.4014(3)	0.0713(13)
C37	0.3874(7)	0.9084(3)	0.3022(3)	0.04/1(1/)
C38	0.4644 (7)	0.9058 (5)	0.2911 (0)	0.039(2)
H38	0.4576	0.9016	0.2457	0.07^{*}
039	0.5520(7)	0.8235 (6)	0.2842 (6)	0.0584 (19)
H39	0.6053	0.8234	0.2358	0.0/*
C40	0.5584 (7)	0.7408 (5)	0.3516(5)	0.0498 (18)
C41	0.4833 (7)	0.7435 (5)	0.4263 (5)	0.0540 (19)
H41	0.4912	0.6889	0.4733	0.065*
C42	0.3979 (7)	0.8271 (5)	0.4301 (5)	0.0530 (18)
H42	0.3462	0.8289	0.4794	0.064*
N43	0.6463 (5)	0.6529 (4)	0.3513 (4)	0.0563 (15)
H43	0.6701	0.6161	0.4089	0.068*
C44	0.6993 (7)	0.6179 (6)	0.2710 (6)	0.0548 (19)
045	0.6655 (5)	0.6604 (4)	0.1829 (4)	0.0682 (14)
C46	0.7926 (7)	0.5216 (6)	0.2971 (5)	0.071 (2)
H46A	0.8045	0.5004	0.3695	0.106*
H46B	0.8903	0.5345	0.291	0.106*
	0 7426	0 4 6 9 4	0 2475	0.10(*

Atomic displacement parameters (A^2)

U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}

C1	0.055 (4)	0.049 (5)	0.045 (4)	0.016 (4)	0.019 (4)	0.011 (4)
C2	0.038 (4)	0.027 (4)	0.051 (4)	0.014 (3)	0.019 (4)	0.012 (4)
C3	0.077 (6)	0.060 (5)	0.071 (6)	-0.005 (4)	0.027 (5)	0.003 (4)
C4	0.050 (5)	0.063 (6)	0.081 (6)	-0.001 (4)	0.009 (5)	0.017 (5)
C5	0.063 (6)	0.059 (6)	0.094 (7)	-0.003 (4)	0.002 (5)	0.006 (5)
C6	0.049 (4)	0.051 (5)	0.057 (5)	-0.004 (4)	0.007 (4)	0.004 (4)
C7	0.050 (4)	0.048 (4)	0.035 (4)	0.010 (4)	0.013 (3)	0.004 (4)
08	0.091 (4)	0.081 (4)	0.056 (3)	-0.030 (3)	0.023 (3)	0.005 (3)
09	0.083 (4)	0.088 (4)	0.054 (3)	-0.007 (3)	0.022 (3)	0.003 (3)
N10	0.081 (4)	0.034 (3)	0.046 (3)	0.006 (3)	0.014 (3)	0.008 (3)
S11	0.0681 (12)	0.0425 (11)	0.0387 (10)	-0.0015 (10)	0.0186 (9)	-0.0069 (9)
012	0.101 (4)	0.038 (3)	0.063 (3)	-0.023 (3)	0.038 (3)	-0.013 (2)
013	0.079 (3)	0.056 (3)	0.057 (3)	-0.001 (3)	0.038 (3)	-0.010 (3)
C14	0.044 (4)	0.036 (4)	0.041 (4)	0.002 (3)	0.011 (3)	0.001 (3)
C15	0.073 (5)	0.053 (5)	0.038 (4)	0.003 (4)	0.035 (4)	0.007 (4)
C16	0.065 (5)	0.054 (5)	0.040 (4)	0.011 (4)	0.020 (4)	0.015 (3)
C17	0.041 (4)	0.033 (4)	0.039 (4)	0.001 (3)	0.014 (3)	0.002 (3)
C18	0.055 (4)	0.052(1)	0.051 (4)	0.001(3)	0.033(4)	0.002(3)
C19	0.064 (4)	0.052(5)	0.033(4)	-0.004(4)	0.023(4)	0.013(4)
N20	0.051 (3)	0.002(0)	0.032(1) 0.037(3)	0.004 (3)	0.023(3)	0.012(3)
C21	0.043 (4)	0.042 (4)	0.034(4)	-0.011(3)	0.026(3)	-0.005(3)
022	0.077(3)	0.058(3)	0.051(3)	0.0011(0)	0.036(3)	0.001(3)
C23	0.069 (5)	0.050(5)	0.051(3)	0.001(3)	0.030(3) 0.017(4)	-0.008(4)
C24	0.003(3)	0.052(5)	0.032(1)	0.011(1) 0.004(3)	0.017(1)	0.011 (4)
C25	0.046(4)	0.048(5)	0.042(4)	0.001(3)	0.010(5) 0.020(4)	0.011(1) 0.009(3)
C26	0.065 (5)	0.061 (5)	0.012(1)	-0.001(4)	0.020(1) 0.022(4)	-0.004(4)
C27	0.065 (5)	0.064 (6)	0.063 (5)	0.001(1)	0.022(1) 0.023(4)	0.026(5)
C28	0.068 (5)	0.004(0) 0.089(7)	0.003(5)	-0.002(5)	0.025(4) 0.017(4)	0.020(5)
C20	0.000(5)	0.009(7)	0.055(5)	0.002(3)	0.017(4)	0.008(3) 0.004(4)
C30	0.053(5)	0.030(5)	0.043(4)	0.007(4)	0.017(4)	0.004(4)
031	0.052(3)	0.070(3)	0.040(3)	-0.015(3)	0.021(4)	-0.010(4)
032	0.071(3)	0.076(3)	0.004(3)	-0.010(3)	0.023(3)	0.010(3)
N33	0.030(4)	0.070(4)	0.005(3)	0.010(3)	0.041(3)	-0.011(3)
N33 S24	0.031(3)	0.070(4)	0.040(3)	-0.0118(10)	0.010(3)	-0.011(3) -0.0137(10)
035	0.0712(13)	0.0307(13)	0.0499(11) 0.079(3)	-0.0118(10) -0.022(3)	0.0194(10)	-0.0137(10) -0.008(3)
035	0.000(4)	0.042(3)	0.079(3)	0.022(3)	0.029(3)	0.008(3)
030	0.101(4)	0.004(3)	0.030(3)	-0.014(3)	0.037(3)	-0.017(3)
C37	0.053(3)	0.047(3)	0.038(4)	-0.011(3)	0.013(4)	-0.002(4)
C38	0.064 (5)	0.052(5)	0.062(5)	-0.010(4)	0.024 (4)	0.024(4)
C39	0.052 (5)	0.067 (5)	0.062(3)	0.007 (4)	0.027(4)	0.026 (4)
C40	0.041 (4)	0.065 (5)	0.045 (4)	-0.001 (4)	0.015 (4)	0.008 (4)
C41	0.058 (5)	0.065 (6)	0.038 (4)	-0.002 (4)	0.014 (4)	0.010 (4)
C42	0.063 (5)	0.059 (5)	0.042 (4)	-0.004 (4)	0.025 (4)	-0.012 (4)
N43	0.058 (4)	0.062 (4)	0.045 (3)	0.003 (3)	0.012 (3)	0.019 (3)
C44	0.047 (4)	0.066 (6)	0.048 (5)	-0.021 (4)	0.013 (4)	-0.005 (4)
045	0.098 (4)	0.065 (4)	0.050 (3)	-0.020 (3)	0.036 (3)	-0.006 (3)
C46	0.057 (5)	0.084 (6)	0.066 (5)	0.004 (5)	0.014 (4)	-0.015 (5)

Geometric parameters (Å, °)

C1—C2	1.387 (8)	C24—C29	1.389 (8)
C1—C6	1.389 (9)	C24—C25	1.403 (8)
C1—C7	1.482 (8)	C24—C30	1.450 (8)
C2—C3	1.379 (8)	C25—C26	1.399 (8)
C2—N10	1.412 (7)	C25—N33	1.402 (7)
C3—C4	1.356 (9)	C26—C27	1.370 (8)
С3—Н3	0.93	С26—Н26	0.93
C4—C5	1.378 (9)	C27—C28	1.386 (9)
C4—H4	0.93	С27—Н27	0.93
C5—C6	1.374 (9)	C28—C29	1.372 (9)
С5—Н5	0.93	C28—H28	0.93
С6—Н6	0.93	С29—Н29	0.93
С7—О8	1.206 (7)	C30—O32	1.215 (7)
С7—О9	1.322 (7)	C30—O31	1.332 (8)
О9—Н9	0.82	O31—H31	0.82
N10—S11	1.611 (5)	N33—S34	1.641 (5)
N10—H10	0.86	N33—H33	0.86
S11—O13	1.415 (4)	S34—O35	1.429 (4)
S11—O12	1.423 (4)	S34—O36	1.438 (4)
S11—C14	1.754 (6)	S34—C37	1.758 (7)
C14—C19	1.380 (7)	C37—C38	1.358 (8)
C14—C15	1.382 (8)	C37—C42	1.366 (8)
C15—C16	1.355 (8)	C38—C39	1.371 (9)
C15—H15	0.93	C38—H38	0.93
C16—C17	1.386 (7)	C39—C40	1.383 (8)
C16—H16	0.93	С39—Н39	0.93
C17—C18	1.348 (8)	C40—C41	1.385 (8)
C17—N20	1.414 (7)	C40—N43	1.412 (7)
C18—C19	1.382 (8)	C41—C42	1.363 (8)
C18—H18	0.93	C41—H41	0.93
С19—Н19	0.93	C42—H42	0.93
N20—C21	1.340 (7)	N43—C44	1.385 (8)
N20—H20	0.86	N43—H43	0.86
C21—O22	1.244 (6)	C44—O45	1.224 (7)
C21—C23	1.497 (8)	C44—C46	1.503 (9)
C23—H23A	0.96	C46—H46A	0.96
С23—Н23В	0.96	C46—H46B	0.96
C23—H23C	0.96	C46—H46C	0.96
C2—C1—C6	118.9 (7)	C29—C24—C25	118.1 (6)
C2—C1—C7	120.8 (6)	C29—C24—C30	120.7 (7)
C6—C1—C7	120.3 (7)	C25—C24—C30	121.2 (6)
C3—C2—C1	119.3 (6)	C26-C25-N33	120.9 (6)
C3—C2—N10	120.8 (6)	C26—C25—C24	119.5 (6)
C1—C2—N10	119.8 (6)	N33—C25—C24	119.6 (6)
C4—C3—C2	122.3 (7)	C27—C26—C25	120.4 (6)
С4—С3—Н3	118.9	С27—С26—Н26	119.8

С2—С3—Н3	118.9	С25—С26—Н26	119.8
C3—C4—C5	118.2 (8)	C26—C27—C28	120.7 (7)
C3—C4—H4	120.9	С26—С27—Н27	119.7
С5—С4—Н4	120.9	С28—С27—Н27	119.7
C6—C5—C4	121.3 (7)	C29—C28—C27	118.8 (7)
С6—С5—Н5	119.3	C29—C28—H28	120.6
С4—С5—Н5	119.3	C27—C28—H28	120.6
C5—C6—C1	119.9 (7)	C28—C29—C24	122.4 (7)
С5—С6—Н6	120.1	С28—С29—Н29	118.8
С1—С6—Н6	120.1	С24—С29—Н29	118.8
O8—C7—O9	121.3 (6)	O32—C30—O31	120.0 (6)
O8—C7—C1	125.3 (6)	O32—C30—C24	125.8 (7)
O9—C7—C1	113.4 (6)	O31—C30—C24	114.2 (6)
С7—О9—Н9	109.5	С30—О31—Н31	109.5
C2—N10—S11	125.8 (4)	C25—N33—S34	124.4 (4)
C2—N10—H10	117.1	C25—N33—H33	117.8
S11—N10—H10	117.1	S34—N33—H33	117.8
O13—S11—O12	117.5 (3)	O35—S34—O36	119.3 (3)
O13—S11—N10	112.5 (3)	O35—S34—N33	109.3 (3)
O12-S11-N10	103.2 (3)	O36—S34—N33	103.7 (3)
O13—S11—C14	107.3 (3)	O35—S34—C37	107.7 (3)
O12—S11—C14	109.7 (3)	O36—S34—C37	109.1 (3)
N10-S11-C14	106.0 (3)	N33—S34—C37	107.1 (3)
C19—C14—C15	119.9 (6)	C38—C37—C42	119.3 (6)
C19—C14—S11	119.9 (5)	C38—C37—S34	119.4 (6)
C15-C14-S11	119.9 (5)	C42—C37—S34	121.2 (5)
C16—C15—C14	119.0 (6)	C37—C38—C39	122.1 (6)
С16—С15—Н15	120.5	С37—С38—Н38	118.9
C14—C15—H15	120.5	С39—С38—Н38	118.9
C15—C16—C17	121.7 (6)	C38—C39—C40	117.8 (6)
C15—C16—H16	119.2	С38—С39—Н39	121.1
C17—C16—H16	119.2	С40—С39—Н39	121.1
C18—C17—C16	119.2 (6)	C39—C40—C41	120.6 (7)
C18—C17—N20	124.7 (5)	C39—C40—N43	122.2 (6)
C16—C17—N20	116.1 (5)	C41—C40—N43	117.2 (6)
C17—C18—C19	120.5 (6)	C42—C41—C40	119.3 (6)
C17—C18—H18	119.7	C42—C41—H41	120.3
C19—C18—H18	119.7	C40—C41—H41	120.3
C14—C19—C18	119.7 (6)	C41—C42—C37	120.8 (6)
C14—C19—H19	120.1	C41—C42—H42	119.6
C18—C19—H19	120.1	C37—C42—H42	119.6
C21—N20—C17	130.0 (5)	C44—N43—C40	128.8 (6)
C21—N20—H20	115	C44—N43—H43	115.6
C17—N20—H20	115	C40—N43—H43	115.6
O22—C21—N20	121.9 (6)	O45—C44—N43	121.7 (7)
O22—C21—C23	121.6 (6)	O45—C44—C46	122.7 (7)
N20—C21—C23	116.5 (6)	N43—C44—C46	115.5 (6)
C21—C23—H23A	109.5	C44—C46—H46A	109.5
C21—C23—H23B	109.5	C44—C46—H46B	109.5

H23A—C23—H23B	109.5	H46A—C46—H46B	109.5
С21—С23—Н23С	109.5	C44—C46—H46C	109.5
H23A—C23—H23C	109.5	H46A—C46—H46C	109.5
H23B—C23—H23C	109.5	H46B—C46—H46C	109.5
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O9—H9···O22 ⁱ	0.82	1.84	2.649 (6)	168
N10—H10…O8	0.86	2.13	2.624 (7)	116
N20—H20…O13 ⁱⁱ	0.86	2.24	3.073 (6)	164
O31—H31···O45 ⁱⁱⁱ	0.82	1.81	2.623 (6)	174
N33—H33…O32	0.86	2.17	2.641 (7)	114
N43—H43···O36 ⁱ	0.86	2.11	2.958 (7)	168
C23—H23B…Cg1	0.96	2.74	3.6110 (15)	151
C46—H46C…Cg2	0.96	2.71	3.5821 (13)	151

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*; (iii) *x*-1, *y*, *z*.

